Generative adversarial network (GAN) and enhanced root mean square error (ERMSE): deep learning for stock price movement prediction

نویسندگان

چکیده

The prediction of stock price movement direction is significant in financial circles and academic. Stock contains complex, incomplete, fuzzy information which makes it an extremely difficult task to predict its development trend. Predicting analysing data a nonlinear, time-dependent problem. With rapid machine learning deep learning, this can be performed more effectively by purposely designed network. This paper aims improve accuracy minimizing forecasting error loss through architecture using Generative Adversarial Networks. It was proposed generic model consisting Phase-space Reconstruction (PSR) method for reconstructing series Network (GAN) combination two neural networks are Long Short-Term Memory (LSTM) as Convolutional Neural (CNN) Discriminative adversarial training forecast the market. LSTM will generate new instances based on historical basic indicators then CNN estimate whether predicted or real. found that has well enhanced root mean square LSTM, 4.35% accurate predicting reduced processing time RMSE 78 secs 0.029, respectively. study provides better result index. seems system concentrates improving accuracy,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep multi-scale video prediction beyond mean square error

Learning to predict future images from a video sequence involves the construction of an internal representation that models the image evolution accurately, and therefore, to some degree, its content and dynamics. This is why pixel-space video prediction is viewed as a promising avenue for unsupervised feature learning. In this work, we train a convolutional network to generate future frames giv...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network

In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to condition the generative process on the textual data; but allying it to the usage of class information, known to diversify the generated samples and ...

متن کامل

Metric Learning-based Generative Adversarial Network

Generative Adversarial Networks (GANs), as a framework for estimating generative models via an adversarial process, have attracted huge attention and have proven to be powerful in a variety of tasks. However, training GANs is well known for being delicate and unstable, partially caused by its sigmoid cross entropy loss function for the discriminator. To overcome such a problem, many researchers...

متن کامل

Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN

We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network. We alternately train both classifier and generator networks. The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image. Simultaneously, the classifier network is trained to classify correctly bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multimedia Tools and Applications

سال: 2021

ISSN: ['1380-7501', '1573-7721']

DOI: https://doi.org/10.1007/s11042-021-11670-w